§5.3平行线的性质(一)
教学目标1.使学生理解平行线的性质和判定的区别. 2.使学生掌握平行线的三个性质,并能运用它们作简单的推理.
重点:平行线的三个性质.难点:平行线的三个性质和怎样区分性质和判定.
关键:能结合图形用符号语言表示平行线的三条性质.
教学过程
一、复习
1.如何用同位角、内错角、同旁内角来判定两条直线是否平行?
2.把它们已知和结论颠倒一下,可得到怎样的语句?它们正确吗?
二、新授
1.实验观察,发现平行线第一个性质
请学生画出下图1进行实验观察.设l1∥l2,l3与它们相交,请度量∠1和∠2的大小,
B
A
D
C
图4
图1 图2 图3
你能发现什么关系?请同学们再作出直线l4,再度量一下∠3和∠4的大小,你还能发现它们有什么关系?
平行线性质1(公理):两直线平行,同位角相等.
2.演绎推理,发现平行线的其它性质
(1)已知:如图2,直线AB,CD被直线EF所截,AB∥CD.求证:∠1= ∠2.
(2)已知:如图3,直线AB,CD被直线EF所截,AB∥CD.求证:∠1+∠2=180°.
在此基础上指出:“平行线的性质2 (定理)”和“平行线的性质3 (定理)”.
3.平行线判定与性质的区别与联系(将判定与性质各三条全部用多媒体显示.)
(1)性质:根据两条直线平行,去证角的相等或互补.
(2)判定:根据两角相等或互补,去证两条直线平行.
联系是:它们的条件和结论是互逆的,性质与判定要证明的问题是不同的.
图5
例2如图4所示,AB∥CD,AC∥BD.找出图中相等的角与互补的角.
此题一定要强调,哪两条直线被哪一条直线所截.
相等的角还有:∠ACD=∠ABD,∠BAC=∠BDC.(同角的补角相等)
例3如图5所示.已知:AD∥BC,∠AEF=∠B,求证:AD∥EF.
证明:因为 AD∥BC,(已知)
所以 ∠A+∠B=180°.(两直线平行,同旁内角互补)
图7
所以 ∠A+∠AEF=180°,(等量代换)
所以 AD∥EF.(同旁内角互补,两条直线平行)
四、练习:
1.如图6所示,已知:AE平分∠BAC,CE平分∠ACD,且AB∥CD.求证:∠1+∠2=90°.
证明:因为 AB∥CD,
所以 ∠BAC+∠ACD=180°,
又因为 AE平分∠BAC,CE平分∠ACD,
故.
即 ∠1+∠2=90°.(理由略)
2.如图7所示,已知:∠1=∠2,求证:∠3+∠4=180°.
分析:(让学生自己分析)
证明:(学生板书)
小结 我们是如何得到平行线的性质定理?通过度量,运用从特殊到一般的思维方式发现性质1(公理),然后由公理通过演绎证明得到后面两个性质定理.从因果关系和所起的作用来看性质定理和判定定理的区别与联系.
作业:
2.如图,EF过△ABC的一个顶点A,且EF∥BC,如果∠B=40°,∠2=75°,那么∠1、∠3、∠C、∠BAC+∠B+∠C各是多少度,为什么?
3.如图,已知AD∥BC,可以得到哪些角的和为180°?已知AB∥CD,可以得到哪些角相等?并简述理由.