您好,欢迎来到欧得旅游网。
搜索
您的当前位置:首页外婆的澎湖湾教学反思

外婆的澎湖湾教学反思

来源:欧得旅游网

  线性规划是《运筹学》中的基本组成部分,是通过数形结合方法来解决日常生活实践中的最优化问题的一种数学模型,体现了数形结合的数学思想,具有很强的现实意义。也是高中数学教材的新增知识点,在近两年高考中属于必考知识。

  线性规划问题,高考主要以选择填空题的形式出现,常考两种类型:一类是求目标函数的最值问题(或取值范围),另一类是考查可行域的作法。下面我们结合教材和各地高考及模拟题举例说明。

  第一大类:求目标函数的最值问题,解答此类题型时,关键是要正确理解目标函数的几何意义,再数形结合求出目标函数的最值,而目标函数的几何意义是由其解析式确定的,常见的目标函数有三类。

  1、截距式(目标函数为二元一次型),即,这也是最常见的类型,目标函数值的几何意义是与直线的纵截距有关。

  2、距离式(目标函数为二元二次型),目标函数值的几何意义与距离有关。

  3、斜率式(目标函数为分式型),目标函数值的几何意义与直线的斜率有关。

  反思该节线性规划的教学,认为应注意如下几个问题

  1.线性规划应用题条件,数据较多,如何梳理已知数据至关重要(以线定界,以点定面)

  2.学生作图时太慢,没有使用尺规作图,找最优解时不会通过斜率比较分析。(用尺作图直观)

  3.借用线性规划思想解题能力不强,某些目标函数的几何意义理解不透。(三组形式)

  4.高考中对线性规划的考查常以选择、填空题的形式出现,具有小巧、灵活的特点,因此,对常见题型要重点训练。

  总之,对于线性规划问题,应坚持应用数形结合的思想方法解题,作出可行域和看出目标函数的几何意义是解题关键。

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- ovod.cn 版权所有 湘ICP备2023023988号-4

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务