《二元一次方程组》教学详案
理解二元一次方程、二元一次方程组和它们的解的含义,并会检验一对数是不是某个二元一次方程组的解.
学会用类比的方法迁移知识;体验二元一次方程组在处理实际问题中的优越性.
通过学习,感受数学与生活的联系,感受学习数学的乐趣.
【重点】 二元一次方程、二元一次方程组及其解的含义. 【难点】 二元一次方程组解的含义.
【教师准备】 教学导入过程的情境图片. 【学生准备】 复习一元一次方程的相关知识.
导入一:
“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡、兔各几何?”这是我国古代数学著作《孙子算经》中记载的数学名题.
人教版数学七年级下册-打印版
你能用哪些方法解决这个问题呢?如果设两个未知数,能解决这个问题吗?
通过古代数学经典习题,可以提升学生对中华传统文化成就的自豪感.学生会用多种
方法解决问题,提出设两个未知数解决问题,对于学生来说还是新的方法,这就为引入二元一次方程的学习做好了过渡的衔接. 导入二:
每块饼干的质量是x克,每颗糖果的质量是y克,小明拿了一个等臂天平,在左边秤盘里放两块饼干,右边秤盘里放三颗糖果,结果天平两臂平衡,当在左边秤盘里又放了三块饼干,右边秤盘里又放了四颗糖果时,天平并没有平衡,只好在右边秤盘里又加了1克的砝码才使得天平平衡.
上面的例子中,可以得到两个方程是2x=3y和5x=7y+1,怎样看待这两个方程呢?它们的解有什么实际意义?
学生对方程的理解暂时还是“一元一次”的程度,提出与“一元一次”性质不同的方
程,能够唤起学生的好奇心,激起学生解决问题的欲望. 导入三:
篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队在10场比赛中得到16分,那么这个队胜、负场数分别是多少?
在上面的问题中,要求的是两个未知数.如果用一元一次方程来解决,列方程时,要用一个未知数表示另一个未知数.能不能根据题意直接设两个未知数,使列方程变得容易呢?我们从这个想法出发,开始本章的学习.
借助于教材情境直接提出用含有两个未知数的方程解决问题,为直接引入二元一次方
程的概念做了铺垫.也让学生感受到要提高解决生活中的数学问题的能力,必须持续地进行学习.
一、二元一次方程
思路一
(针对导入三)前面提到的两个未知数的方程是什么方程呢?与我们学过的一元一次方程有什么不同呢? 问题
(1)情境中包含哪两个等量关系?
人教版数学七年级下册-打印版
(2)如果设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗? (3)你能把上述等量关系整理在下面的表格中吗?
场数 积分
胜
负
合计
方程:
(4)新列出的方程有什么特点?与一元一次方程有什么不同? (5)你能总结什么是二元一次方程吗?
〔解析〕 情境中包含这样两个等量关系:胜的场数+负的场数=总场数,胜场积分+负场积分=总积分.列表如下:
场数 积分
胜
负
合计 10 16
x
2x
y y
方程:2x+y=16
x+y=10
认识新列出的两个方程的特点,可以从未知数的数量和未知数的次数两个方面进行分析.方程x+y=10与2x+y=16都含有两个未知数x和y,并且含有未知数的项的次数都是1.这两个方程中都含有两个未知数,而一元一次方程中只含有一个未知数.
学生讨论交流后共同总结以上五个问题的答案.
定义:上面两个方程中,每个方程都含有两个未知数(x和y),并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.
(补充)下列方程中,是二元一次方程的是 ( )
A.7x+3y=2 B.xy=9 C.x+2y=11 D.=2
〔解析〕 本题考查二元一次方程的定义,B选项的次数为2,C选项的最高次数为2,D选项不是整式方程,故都不是二元一次方程.故选A.
2
从以下三个方面整体理解二元一次方程的定义:(1)有两个未知数;(2)含有未知数的
项的次数为1;(3)是整式方程.
1.二元一次方程还可以定义为:在方程中有两个未知数,未知数与未知数之间没有乘
法、除法运算,并且未知数的次数都是1,像这样的方程叫做二元一次方程.
人教版数学七年级下册-打印版
2.理解二元一次方程的概念要特别注意对次数的要求是“含有未知数的项的次数为1”,不能理解为“每个未知数的次数都是1”,如xy+2=0就不是一个二元一次方程.
思路二
(针对导入一)同学们想一想,怎样求出有多少只鸡和多少只兔子呢? 学生用各自的方法计算,然后讨论交流.
算法展示:
(1)算数方法:把兔子和鸡的脚数看成“相等”,则多出94- 35×2=24只脚,每只兔子比鸡多出两只脚,由此可先求出兔子有24÷2=12(只),随后可算出鸡有35- 12=23(只).
类似地也可以先求鸡的数量:35×4- 94=46(只),46÷2=23(只). (2)列一元一次方程:
设有x只鸡,则有(35- x)只兔子. 根据题意,得2x+4(35- x)=94. 解方程可求出x=23.35- 23=12(只). 所以有23只鸡,12只兔子.
刚才同学们用了不同的方法解决了古代的数学问题.我们还有没有其他的解决办法呢? 如果我们设有x只鸡,有y只兔子,依题意得这样两个方程:
x+y=35,2x+4y=94.
同学们比较这两个方程与前面学过的一元一次方程,有什么不同呢? (老师提示学生从未知数数量和未知数的次数进行比较.) 结合学生的回答,教师板书定义:
含有两个未知数,并且含有未知数的项的次数都是1的方程,叫做二元一次方程. 二、二元一次方程组
如果把上面的两个方程放在一起,我们怎么称呼这样的方程呢? 上面的问题中包含两个必须同时满足的条件,也就是未知数x,y必须同时满足方程:
x+y=10,①
2x+y=16.②
把这两个方程合在一起,写成就组成了一个方程组.这个方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程组.
人教版数学七年级下册-打印版
二元一次方程组的概念是一个描述性定义,两个未知数不是两个方程中每个方程都含
有两个未知数,可以是一个方程中含有一个未知数,也可以是两个方程中含有不同的两个未知数.
(补充)下列方程组中,属于二元一次方程组的是 ( )
A. B. C. D.
〔解析〕 本题主要考查二元一次方程组的定义.A选项共含有三个未知数;B选项中的未知数的最高次数是2;D选项中不全是整式方程,故都不是二元一次方程组.故选C. 三、二元一次方程组的解
同学们知道一元一次方程解的定义,那么二元一次方程组的解和一元一次方程的解之间是否存在着一定的联系呢?
问题1
下面哪些解既适合方程x+y=10,又符合问题的实际意义?
x 0 1 2 3 4 5 6 7 8 9 10 y 10 9 8 7 6 5 4 3 2 1 0
〔解析〕 由上表可知x=0,y=10;x=1,y=9;…;x=10,y=0使方程x+y=10两边的值相等,
它们都是方程x+y=10的解.如果不考虑方程x+y=10与上面实际问题的联系,那么x=- 1,y=11;x=0.5,y=9.5;…也都是这个方程的解.这说明二元一次方程除非有实际意义的限制或者特别的限制,否则这种方程有无数个解.
问题2
写出方程2x+y=16的几个解?
〔解析〕 例如x=0,y=16;x=1,y=14;x=5,y=6……都是2x+y=16的解. 问题3
上述表格中的解,哪些或哪个是方程2x+y=16的解? 〔解析〕 x=6,y=4. 问题4
什么是二元一次方程组的解?
人教版数学七年级下册-打印版
〔解析〕 一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.我们还发现,x=6,y=4既满足方程①,又满足方程②,也就是说,x=6,y=4是方程①与方程②的公共解,我们把x=6,y=4叫做二元一次方程组的解.这个解通常记作一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.
问题1和问题2是在学生已掌握的一元一次方程解的知识基础上,深化对二元一次方
程解的认识.问题3和问题4则引导学生发现和总结二元一次方程组解的特点.
二元一次方程组的解是一对数,要将这对数代入方程组中的每一个方程进行检验,这
对数只有满足方程组中的每一个方程,才能是这个方程组的解,而一元一次方程的解是一个数,这是它们之间的区别.
1.含有两个未知数,并且含有未知数的项的次数都是1的方程,叫做二元一次方程. 2.一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 3.一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.
1.下列方程中,是二元一次方程的是 ( ) A.3x- 2y=1 B.xy+y=9 C.x- 3=4y D.x+x=2
解析:本题考查二元一次方程的定义.B选项的未知数的最高次数为2,C选项的未知数的最高次数为2,D选项不含有两个未知数,因此它们都不是二元一次方程.故选A.
2.下列各组数中,不是方程x+y=7的解的是 ( ) A. B. C. D.
解析:将四个选项分别代入方程,能使方程成立的即是方程的解.反之,则不是方程的解.A.3+4=7,C.1+6=7,D.10+(- 3)=7,均是方程的解,不符合选择要求;B.12+(- 1)=11≠7,不是方程的解,符合选择要求.故选B.
3.方程ax- y=3的解是则a的值是 ( ) A.5 B.- 5 C.2 D.1
解析:把代入方程ax- y=3,得a- 2=3,解得a=5.故选A. 4.请判断下列各组数是不是二元一次方程组的解:
2
人教版数学七年级下册-打印版
(1) (2)
解:(1)把代入方程组,发现不满足2x- 3y=4,所以不是原方程组的解. (2)把代入方程组,发现适合每一个方程,所以是原方程组的解.
8.1 二元一次方程组
1.二元一次方程 2.二元一次方程组 3.二元一次方程组的解
一、教材作业 【必做题】
教材第89页练习. 【选做题】
教材第90页习题8.1第5题. 二、课后作业 【基础巩固】
1.下列方程中,是二元一次方程的是 ( ) A.xy=1 B.y=5x- 2 C.x+x=4 D.x+y+z=1 2.下列说法中正确的是
( )
2
A.二元一次方程只有一个解 B.二元一次方程组有无数个解
C.二元一次方程组的解必是它所含的二元一次方程的公共解
D.判断一组数是否为二元一次方程组的解,只需代入其中的一个二元一次方程即可 3.以为解的二元一次方程组是 ( ) A. B. C. D.
4.母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,若设鲜花x元/束,礼盒
y元/个,则可列方程组为 .
人教版数学七年级下册-打印版
5.若是方程组的解,求m- n的值. 【能力提升】 6.若3x3m- 2
2
- 2yn- 4
=12是关于x,y的二元一次方程,则m和n的值分别是 ( )
A.m=0,n=0 B.m=1,n=4 C.m=1,n=5 D.m=,n=4
7.二元一次方程组的解是 ( ) A. B. C. D.
8.方程■x- 2y=x+5是二元一次方程,■是被污染的x的系数,请你推断■的值属于下列情况中的
( )
A.不可能是- 1 B.不可能是- 2 C.不可能是1 D.不可能是2
9.若关于x,y的方程组的解是则|m- n|为 A.1 B.3 C.5 D.2
10.根据下列语句,设适当的未知数,列出二元一次方程(组): (1)甲数的2倍与乙数的的差等于48的;
(2)林山学校七年级共招收学生292人,其中男生人数比女生人数多35人. 【拓展探究】
11.小明在做家庭作业时,发现练习册上一道解方程组的题目被墨水污染了:“□”是被污染的内容.他很着急,翻开后面的答案,发现这道题的解是你能帮小明补上“□”的内容吗?说出你的方法.
12.根据下列问题,列出关于x,y的二元一次方程组.
(1)一个两位数的个位数字与十位数字之和为11,把它的个位数字与十位数字对调,所得的数比原数大63,设原两位数的个位数字为x,十位数字为y.
(2)七(2)班买了35张电影票,共用250元,其中甲种票每张8元,乙种票每张6元,则甲、乙两种票各买了多少张?设甲种票买了x张,乙种票买了y张. 【答案与解析】
( )
人教版数学七年级下册-打印版
1.B(解析:二元一次方程只含有两个未知数,且含未知数的项的次数为1,满足条件的是
y=5x- 2.故选B.)
2.C(解析:A.二元一次方程有无数个解,故本选项错误;B.当两个方程不同时,有一个解,当两个方程相同时,有无数个解,故本选项错误;C.二元一次方程组的解必是它所含的二元一次方程的公共解,故本选项正确;D.判断一组数是否为二元一次方程组的解,需代入两个二元一次方程,故本选项错误.故选C.)
3.C(解析:将代入各个方程组,可知满足条件.故选C.) 4.
5.解:把代入方程2x+3y=m得:2×(- 1)+3×2=- 2+6=4=m,把代入方程5x+2y=n得:5×(- 1)+2×2=- 5+4=- 1=n.所以m- n=4- (- 1)=16+1=17.
6.C(解析:本题主要考查二元一次方程与一元一次方程的综合应用.因为3x关于x,y的二元一次方程,所以3m- 2=1,n- 4=1,解得m=1,n=5.故选C.) 7.D(解析:将各选项代入即可.)
8.C(解析:如果被污染的x的系数是1,那么这个方程就是x- 2y=x+5,即- 2y=5.与题意:二元一次方程矛盾,所以被污染的x的系数不可能是1.)
9.D(解析:把代入方程2y+m=n,得2+m=n,所以|m- n|=2.故选D.)
10.解:(1)设甲数为x,乙数为y,根据题意得2x- y=48×. (2)设男生为x人,女生为y人,根据题意得
11.解:把代入方程组,得2x- y=2×1- (- 2)=4,3x+4y=3×1+4×(- 2)=- 5.所以被污染的数字是4和- 5.
12.解:(1)等量关系:①个位数字与十位数字之和为11;②把它的个位数字与十位数字对调,所得的数比原数大63.由题意可列方程组为 (2)等量关系:①共买了35张电影票;②共用250元.由题意可列方程组为
3m- 2
2
2
- 2yn- 4
=12是
本课时在设计理念上围绕着类比的思路展开,充分借助于学生已掌握的一元一次方程知识,通过与一元一次方程的比较,引入二元一次方程的定义.通过类比一元一次方程的解,延伸到二元一次方程组的解.在这种设计理念的指导下,顺利地实现了本课时的教学目标.
人教版数学七年级下册-打印版
本课时的教学重点和难点集中在二元一次方程组的解的问题上,在处理这个问题时,除了强调一般的检验方法外,没有特别强调需要对方程组中两个方程分别去验证.
由于本课时的三个概念,即二元一次方程、二元一次方程组、二元一次方程组的解都是描述性的概念,因此可以让学生通过对知识的理解,自己去总结和描述相关定义.
练习(教材第89页)
解:设第一道工序安排x人,第二道工序安排y人,则有
由②得…将这些解分
别代入①,可得是该方程组的解.答:第一道工序安排4人,第二道工序安排3人. 习题8.1(教材第90页) 1.解:
x - 2 0 0.4 2 y 11 5 3.8 - 1
-
2 3
- 1 0 0.5
2.C(解析:把各选项分别代入方程组验证.)
3.解:(1)x,y满足的关系式为x+2y=180. (2)当x=90时,y==45. (3)当y=60时,x=180- 2×60=60.
4.解:设有鸡x只,兔y只,根据题意,得鸡23只,兔12只.
5.解:设截2 m长的钢管x段,1 m长的钢管y段,根据题意,得2x+y=7.∵题中要求不浪费,且x,y为正整数,∴当x=1时,y=5;当x=2时,y=3;当x=3时,y=1.∴共有三种不同的截法:①2 m长的1段,1 m长的5段;②2 m长的2段,1 m长的3段;③2 m长的3段,1 m长的1段.
由①得…把这些解代入②,得答:有
已知方程4xm- 1+2y1- 2n=10是关于x,y的二元一次方程,求m,n的值.
人教版数学七年级下册-打印版
〔解析〕 本题考查的是二元一次方程的定义,根据二元一次方程的定义:含未知数的项的次数为1,系数不等于0,求得m,n的值.
解:由二次一元方程的定义可得m- 1=1,1- 2n=1.由此可得m=2,n=0.
已知方程(m- 3)x|n|- 1+=0是关于x,y的二元一次方程,求m,n的值.
解:由题意得|n|- 1=1,m≠3,m- 8=1,n≠- 2,解得n=2,m=- 3.
2
已知二元一次方程组 下面说法正确的是 ( )
A.同时适合方程①和方程②的x,y的值是方程组的解 B.适合方程①的x,y的值是方程组的解 C.适合方程②的x,y的值是方程组的解
D.适合方程①或方程②的x,y的值一定是方程组的解 〔解析〕 方程组的解必须是同时满足两个方程的解.故选A.
检验是不是方程组 的解.
〔错解〕 把代入①中,左边=2×1- (- 5)=7,右边=7.∵左边=右边,∴是方程组的解.
二元一次方程组的解应满足方程组中全部方程,因此在检验方程组的解时应该对每一
个方程都进行检验.若只满足其中部分方程,将不能作为方程组的解.初学者往往受一元一次方程的解的检验的习惯的影响,只对一个方程进行检验,而忽略对另外的方程进行检验.错解的主要原因是没有将代入方程②进行检验,因为二元一次方程组的解是其中所有方程的公共解.
〔正解〕 把代入①中,左边=2×1- (- 5)=7,右边=7.∵左边=右边,∴是方程①的解.再把代入②中,左边=1+2×(- 5)=- 9,右边=- 4.∵左边≠右边,∴不是方程②的解,∴不是方程组的解.
因篇幅问题不能全部显示,请点此查看更多更全内容