IRF7341QPbF
HEXFET® Power MOSFET
Benefits
• Advanced Process Technology• ÿDual N-Channel MOSFET• ÿUltra Low On-Resistance
• ÿ175°C Operating Temperature
• ÿRepetitive Avalanche Allowed up to Tjmax• ÿLead-Free
VDSS 55VRDS(on) max0.050@VGS = 10V0.065@VGS = 4.5VID5.1A4.42ADescription
These HEXFET ® Power MOSFET’s in a Dual SO-8 packageutilize the lastest processing techniques to achieve extremelylow on-resistance per silicon area. Additional features ofthese HEXFET Power MOSFET’s are a 175°C junctionoperating temperature, fast switching speed and improvedrepetitive avalanche rating. These benefits combine to makethis design an extremely efficient and reliable device for usein a wide variety of applications.
The 175°C rating for the SO-8 package provides improvedthermal performance with increased safe operating area anddual MOSFET die capability make it ideal in a variety of powerapplications. This dual, surface mount SO-8 can dramaticallyreduce board space and is also available in Tape & Reel.
S1G1S2G2123487D1D1D2D265Top ViewSO-8Absolute Maximum Ratings
Parameter
Max.
Units
VDSDrain-Source Voltage55VID @ TA = 25°CContinuous Drain Current, VGS @ 10V5.1ID @ TA = 70°CContinuous Drain Current, VGS @ 10V4.2AIDMPulsed Drain Current42PD @TA = 25°CMaximum Power Dissipation2.4WPD @TA = 70°CMaximum Power Dissipation1.7W Linear Derating Factor 16 mW/°CVGS Gate-to-Source Voltage ± 20VEASSingle Pulse Avalanche Energy140mJIARAvalanche Current 5.1AEARRepetitive Avalanche EnergySee Fig. 14, 15, 16mJTJ , TSTGJunction and Storage Temperature Range-55 to + 175°CThermal Resistance
RθJA
Parameter Max.
Maximum Junction-to-Ambient Units 62.5 °C/Wwww.irf.com1
08/03/10
http://oneic.com/
IRF7341QPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)DSS
∆V(BR)DSS/∆TJ
Parameter
Drain-to-Source Breakdown VoltageBreakdown Voltage Temp. CoefficientStatic Drain-to-Source On-ResistanceGate Threshold VoltageForward TransconductanceDrain-to-Source Leakage CurrentGate-to-Source Forward LeakageGate-to-Source Reverse LeakageTotal Gate ChargeGate-to-Source Charge
Gate-to-Drain (\"Miller\") ChargeTurn-On Delay TimeRise Time
Turn-Off Delay TimeFall TimeInput CapacitanceOutput Capacitance
Reverse Transfer Capacitance
RDS(on)VGS(th)gfsIDSSIGSSQgQgsQgdtd(on)trtd(off)tfCissCossCrss
Min.55––––––1.010.4––––––––––––––––––––––––––––––––––––––––––Typ.–––0.0520.0430.056––––––––––––––––––292.97.39.27.73112.578019066Max.UnitsConditions–––VVGS = 0V, ID = 250µA
–––V/°CReference to 25°C, ID = 1mA0.050VGS = 10V, ID = 5.1A Ω
0.065VGS = 4.5V, ID = 4.42A –––VVDS = VGS, ID = 250µA–––SVDS = 10V, ID = 5.2A2.0VDS = 44V, VGS = 0VµA
25VDS = 44V, VGS = 0V, TJ = 150°C100VGS = 20V
nA
-100VGS = -20V44ID = 5.2A4.4nCVDS = 44V11VGS = 10V–––VDD = 28V–––ID = 1.0A
ns
–––RG = 6.0Ω–––VGS = 10V –––VGS = 0V–––pFVDS = 25V–––ƒ = 1.0MHz
Source-Drain Ratings and Characteristics
ISISMVSDtrrQrr ParameterContinuous Source Current(Body Diode)Pulsed Source Current(Body Diode) Diode Forward VoltageReverse Recovery TimeReverse Recovery ChargeMin.Typ.Max.Units––––––––––––51762.4A421.277114VnsnC ConditionsDMOSFET symbolshowing theGintegral reversep-n junction diode.STJ = 25°C, IS = 2.6A, VGS = 0V TJ = 25°C, IF = 2.6Adi/dt = 100A/µs Notes:
max. junction temperature.
Repetitive rating; pulse width limited byPulse width ≤ 300µs; duty cycle ≤ 2%.
Surface mounted on FR-4 board, t ≤ 10sec.
2www.irf.com
http://oneic.com/
IRF7341QPbF
100
VGS 100
VGS TOP 15.0V 10.0V 7.0V 5.5V 4.5V 4.0V 3.5VBOTTOM 2.7VID, Drain-to-Source Current (A)10
ID, Drain-to-Source Current (A)TOP 15.0V 10.0V 7.0V 5.5V 4.5V 4.0V 3.5VBOTTOM 2.7V10
2.7V2.7V1
1
20µs PULSE WIDTHTj = 25°C0.1
0.1
1
10
100
0.1
0.1
1
20µs PULSE WIDTHTj = 175°C10
100
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1002.5°T = 25 CJR S ( o n ) , Drain-to-Source On ResistanceD(Normalized)ID=5.2AI D , Drain-to-Source Current (A)2.0°T = 175 CJ 101.51.00.5 12.0V = 25VDS20µs PULSE WIDTH3.04.05.06.07.00.0-60-40-200VGS=10V20406080100120140160180V , Gate-to-Source Voltage (V)GS°T , Junction Temperature( C)JFig 3. Typical Transfer CharacteristicsFig 4. Normalized On-ResistanceVs. Temperature
www.irf.com3
http://oneic.com/
IRF7341QPbF
1400VGS = 0V, f = 1 MHZC1200
SHORTEDiss = Cgs + Cgd, Cds Crss = Cgd )F1000Cposs = Cds + Cgd(ecna800Cissticapa600C ,C400200CossCrss01
10
100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage 100)A( tT = 175 CnJ°erruC 10 niarDT = 25 C J°esreve 1R , D SI0.1V = 0 V GS0.20.50.81.11.4V ,Source-to-Drain Voltage (V)SDFig 7. Typical Source-Drain DiodeForward Voltage
4http://oneic.com/
20ID=5.2AVVDS= 44V)V(VDS= 27V DS= 11Ve16gatloV ec12ruoS-ot-8etaG , S 4VG001020304050Q , Total Gate Charge (nC)GFig 6. Typical Gate Charge Vs.Gate-to-Source Voltage
1000OPERATION IN THIS AREA LIMITEDBY RDS(on))A 100( tne10usrruC n 10100usiarD1ms , DI 110ms T° TC= 25 C°0.1 Single PulseJ= 175 C0.1 1 10 100 1000V , Drain-to-Source Voltage (V)DSFig 8. Maximum Safe Operating Areawww.irf.com
IRF7341QPbF
6.0VDS5.0RDVGSRGD.U.T.+I , Drain Current (A)D4.0-VDD
3.010VPulse Width ≤ 1 µsDuty Factor ≤ 0.1 %2.0Fig 10a. Switching Time Test Circuit
VDS90%1.00.02550°T , Case Temperature( C)C75100125150175Fig 9. Maximum Drain Current Vs.Case Temperature
10%VGStd(on)trtd(off)tfFig 10b. Switching Time Waveforms
100D = 0.50Thermal Response(Z t h J )A 100.200.100.050.02 10.01PDMSINGLE PULSE(THERMAL RESPONSE)t1t2Notes:1. Duty factor D =t / t122. Peak TJ=PDMx ZthJA+ TA0.00010.0010.010.1 1 10 1000.10.010.00001t , Rectangular Pulse Duration (sec)1Fig 10. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com5
http://oneic.com/
IRF7341QPbF
ΩRDS ( on ) , Drain-to-Source On Resistance ( ) (), Drain-to -Source On ResistanceΩRDS(on)0.0700.100
0.0600.080
0.0500.060
VGS = 4.5V0.040
VGS = 10V0.020
0
10
20
30
40
50
60
ID , Drain Current ( A )
0.0400.030ID = 7.1A0.0202.04.06.08.010.012.014.016.0VGS, Gate -to -Source Voltage (V)
Fig 11. Typical On-Resistance Vs.
Gate Voltage
QGFig 12. Typical On-Resistance Vs.
Drain Current
10 VQGSVGEA , Single Pulse Avalanche Energy (mJ)S400QGD320IDTOPBOTTOM2.1A 4.3A 5.1A Charge240Fig 13a. Basic Gate Charge Waveform
CurrentRegulatorSameTypeasD.U.T.16050KΩ12V.2µF.3µF80D.U.T.VGS3mA+V-DS0255075100125150175Starting Tj, Junction TemperatureIGID°( C)CurrentSamplingResistorsFig 13b. Gate Charge Test Circuit
Fig 14. Maximum Avalanche EnergyVs. Drain Current
6www.irf.com
http://oneic.com/
IRF7341QPbF
100Duty Cycle = Single Pulse10Avalanche Current (A)10.010.050.10Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆Tj = 25°C due to avalanche losses0.10.010.0011.0E-061.0E-051.0E-041.0E-031.0E-021.0E-011.0E+001.0E+011.0E+02tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
14012010080604020025
50
EAR , Avalanche Energy (mJ)TOP Single Pulse BOTTOM 10% Duty CycleID = 5.1A75100125150
Starting TJ , Junction Temperature (°C)
Notes on Repetitive Avalanche Curves , Figures 15, 16:(For further info, see AN-1005 at www.irf.com)1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche.175 D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]EAS (AR) = PD (ave)·tav
Fig 16. Maximum Avalanche Energy
Vs. Temperature
www.irf.com7
http://oneic.com/
IRF7341QPbF
SO-8 Package Outline
Dimensions are shown in millimeters (inches)DA5BDIMAbINCHESMIN.0532.013.0075.189.1497MAX.0688.0098.020.0098.1968.1574MILLIMETERSMIN1.350.100.330.194.803.80MAX1.750.250.510.255.004.00A1.00406E8765H0.25 [.010] AcDEee1H1234.050 BASIC.025 BASIC.2284.0099.016 0°.2440.0196.050 8°1.27 BASIC0.635 BASIC5.800.250.40 0°6.200.501.27 8°6XeKLye1AK x 45°C0.10 [.004] y8X c8X b0.25 [.010] A1CAB8X L7NOTES:1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.2. CONTROLLING DIMENSION: MILLIMETER3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.3X 1.27 [.050]6.46 [.255]FOOTPRINT8X 0.72 [.028]8X 1.78 [.070]SO-8 Part MarkingEXAMPLE: THIS IS AN IRF7101 (MOSFET)DATE CODE (YWW)P = DESIGNATES LEAD-FREEPRODUCT (OPTIONAL)Y = LAST DIGIT OF THE YEARWW = WEEKA = ASSEMBLY SITE CODELOT CODEPART NUMBERINTERNATIONALRECTIFIERLOGOXXXXF7101Notes:1.For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/2.For the most current drawing please refer to IR website at http://www.irf.com/package/8www.irf.comhttp://oneic.com/IRF7341QPbF
SO-8 Tape and Reel
Dimensions are shown in millimeters (inches)
TERMINAL NUMBER 112.3 ( .484 )11.7 ( .461 )8.1 ( .318 )7.9 ( .312 )FEED DIRECTIONNOTES:1. CONTROLLING DIMENSION : MILLIMETER.2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00(12.992) MAX.14.40 ( .566 )12.40 ( .488 )NOTES :1. CONTROLLING DIMENSION : MILLIMETER.2. OUTLINE CONFORMS TO EIA-481 & EIA-541.Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.08/2010
www.irf.com9
http://oneic.com/
分销商库存信息:
IR
IRF7341QTRPBF
因篇幅问题不能全部显示,请点此查看更多更全内容