确定起跑线说课稿
确定起跑线说课稿1 教学目的:
1、通过数学活动让学生理解田径赛道的构造,学会确定塞到起跑线的方法。
2、结合详细实际问题,通过观察、比拟、分析^p 、归纳等数学活动,让学生通过独立考虑与合作交流等活动进步解决实际问题的才能。
3、在主动参与数学活动的过程中,让学生实在体会到探究的乐趣,感受到数学知识在生活中的广泛应用。
教学重点:通过对赛道周长的计算,理解田径场跑道的构造,能根据所学知识解决确定起跑线的问题。
教学难点:综合运用圆的知识解答生活中遇到的实际问题,探究起跑线位置的设置与什么有关。
教学过程: 一、视频导入:
出示关于100米和400米比赛的视频,学生认真观察,想想两种比赛规那么上有什么一样和不同。
第 1 页 共 18 页
〔设计意图:吸引学生的注意力,能将100米和400米比赛直观的展如今学生面前,便于学生观察和理解。联络生活,增加学生学习数学的兴趣。〕
一样:都在各自的跑道上。
不同:100米为直道,400米为弯道,且400米赛道运发动的起跑线不同。
师:为什么100米站在同一起跑线上,而400米却不同?〔可追加问题:假如你是一名运发动,在400米跑中你会选择哪条赛道?〕
〔出示图片“赛道”〕
生:在外圈的吃亏,外圈比内圈长。
生:内圈的起跑线向前挪动一些,终点不变,这样比赛就公平了。
〔给学生足够的考虑和答复时间〕
师:同学的思维非常的敏锐,而且超出了老师的想想。那么外圈的起跑线终究要向前挪动多少,比赛才相对的公平呢?
〔设计意图:适当的表扬和鼓励,激发学生继续探究的兴趣,为下面学习新知奠定根底。〕
师:所以为理解决比赛公平的问题,我们共同研究如何“确定起跑线”,板书课题。
二、进入新课。
第 2 页 共 18 页
1、分析^p 赛道
师讲解跑道构造:400米标准运动场一般有8条赛道,最里面的为第一道,依次为第二道,第三道……,每条赛道有内外两条线组成,每条跑道的长度指这条赛道中内测线的长度。那么〔课件出示以下三个问题〕
〔1〕400米运动场指的是那条赛道的长度? 〔2〕每条赛道由几局部组成? 〔3〕如何计算每条跑道的长度?
〔设计意图:第二、三问题直接点出本课的教学重点,且难度适中,在学生考虑和讨论的过程中很容易得出合理的结论,以此来增强学生学习的兴趣。〕
小组讨论
小组内和同学交流你的观点,看看谁的观点更准确,方法更简便。
学生汇报小组讨论结果
生:400米运动场指的是第一条赛道的长度。
生:由4局部组成,其中有两条直道和两条弯道,两条弯道可以组成以一个圆。
生:跑道一圈的长度=2条直道的长度+一个圆的周长 2、搜集数据
第 3 页 共 18 页
师:利用刚刚讨论的结果,计算各赛道的长度,并把所得的数据填到信息采集表中。
〔设计意图:学生用自己认为可行的方法来解决实际问题,锻炼学生的理论才能,将理论和实际结合,不空乏的纸上谈兵。〕
3、分析^p 数据
师:如何计算相邻两跑道的长度差?
生:分别把每条跑道的程度计算出来,也就是计算两个直道长度与一个圆周长的总和,在相减,就可以知道相邻两条跑道的差。
师:谁还有更简便的计算方法么?
生:因为跑道的长度与直道无关,只要计算出各圆的周长,算出相邻两圆的周长相差多少米,就是相邻跑道的差。
师:假如我们在计算圆的周长时直接用π来表示,看我们有什么发现?
〔72.6+1.25×2〕π-72.6π=72.6π-72.6π+1.25×2×π
1.25×2×π …… 4、形成结论
〔相邻跑道起跑线相差都是“跑道宽×2×π”〕
第 4 页 共 18 页
师:〔结论〕同学们经过努力终于找到了确定起跑线的机密!只要知道跑道的宽度,就能确定起跑线的位置。
三、知识拓展:
200米、800米、1500米比赛的起跑线该如何确定? 五、小结,这节课你有什么收获?
生:为了使比赛公平,外圈跑道的起跑线要向前挪动。 生:向前挪动的间隔 是两个相邻跑道的差。 生:两个相邻跑道的长度差,只与跑道的宽度有关。 生:我知道400米跑相邻跑道的差的计算方法是 相邻赛道差=赛道宽×2×π 四、板书设计:
每条赛道的长度=两个直道的长度+圆的周长 400米跑相邻赛道的差=跑道宽×2×π 确定起跑线说课稿2 教学目的
1、通过活动让学生理解椭圆式田径场跑道的构造,学会确定起跑线的方法。
2、结合详细的实际问题,通过观察、比拟、分析^p 、归纳等数学活动,让学生通过独立考虑与合作交流等活动进步解决实际问题的才能。
3、在主动参与数学活动的过程中,让学生实在体会到探究的乐趣,感受到数学知识在生活中的广泛应用。
第 5 页 共 18 页
重点:
能运用周长的知识确定起跑线。 难点:
理解相邻起跑线的间隔 与跑道宽度之间的关系。 教学过程
一、创设情境,生成问题。
师:同学们,你们看过田径比赛吗?回忆一下在运动会田径比赛中,100米比赛和400米比赛的起点位置有什么不同?
生:100米比赛的运发动在同一起跑线上,400米比赛的运发动在不同的起跑线上。
师:为什么?
生可能答复,假如400米比赛运发动在同一起跑线上,外圈跑的路程长,那样不公平,所以外圈的起跑线要向前移一些。
师:那向前移多少呢?〔生不知道〕这就是我们这节课要研究的如何确定起跑线。〔板书课题〕
二、探究交流,解决问题 〔课件出示完好跑道图〕 1、理解跑道构造:
小组交流:观察跑道图,说一说,每一条跑道详细是由哪几局部组成的?内外跑道的差异是怎样形成的?
第 6 页 共 18 页
学生充分交流得出结论:
①跑道一圈长度=2条直道长度+一个圆的周长 ②内外跑道的长度不一样是因为圆的周长不一样。 2、理解了跑道的构造,你想怎样解决“400米比赛外道的起跑线要向前移多少米”的问题?
先自己考虑,再与同桌说一说,最后汇报方案。 学生汇报:〔预设〕
〔1〕算出跑道的全长,外道的长度比内道长多少,外道的起跑线相应向前移多少。
〔2〕算出两侧半圆形跑道拼成一个整圆的周长,外圆的周长比内圆的周长长多少米,跑道就向前移几米。
〔3〕直接利用周长公式求周长差
预设〔3〕学生不容易想到,如没有提出这种想法可以在汇报的过程中浸透、明析。
3、组织学生探究
师:如今就可以按照自己设想的方案算出相邻的跑道的起跑线应相差多少米?
有困难的可以同桌互相帮助,共同完成。 老师巡视辅导。 4、汇报交流,发现规律 〔1〕学生汇报不同的计算方法
第 7 页 共 18 页
a、算跑道全长, b、算圆的周长
〔2〕比拟哪种计算方法更简单,还用更简单的方法吗? 〔3〕引发学生进一步考虑方法二,运用公式直接计算周长差
假如我们在计算圆的周长时直接用π来表示,看有什么发现?
〔72.6+1.25×2〕π-72.6π =72.6π-72.6π+1.25×2×π =1.25×2×π
〔75.1+1.25×2〕π-75.1π =75.1π-75.1π+1.25×2×π =1.25×2×π
〔相邻跑道起跑线相差都是“跑道宽×2×π”〕 师:从这里可以看出:起跑线确实定与什么关系最为亲密?
生:与跑道的宽度关系最为亲密。
师〔小结〕:同学们经过努力终于找到了确定起跑线的机密!对了,其实只要知道了跑道的宽度,就能确定起跑线的位置
三、稳固应用,内化进步
第 8 页 共 18 页
1、小学生运动会的跑道宽比成人比赛的跑道宽要窄些,要开小学生运动会,你能帮裁判计算出相邻两条跑道的起跑线又该相差多少米吗?400米的跑步比赛,跑道宽为1米,起跑线该依次提早多少米?假如跑道宽是1.2米呢?在运动场上还有200米的比赛,跑道宽为1.25米,起跑线又该依次提早多少米?
2、一根足够长的铁丝紧贴地面绕地球一周形成一个圆,当将这个铁
丝延长10米,然后距地面一定高度后重新绕地球一周围成一个圆,请问你能从铁丝下面走过去吗?
四、回忆整理,反思提升
通过这节课的学习,你有何收获?觉得自己表现怎样? 确定起跑线说课稿3 教学内容:
人教版课程标准实验教材六年级上册第75—76页。 教学目的:
1、通过该活动让学生理解椭圆式田径场跑道的构造,学会确定起跑线的方法。
2、通过活动培养学生利用小组合作,探究解决问题的才能。
3、通过活动让学生实在体会到探究的乐趣,感受到数学在体育等领域的广泛应用。
第 9 页 共 18 页
教学过程:
一、课前谈话:〔3分钟〕
同学们,前不久我们银川市承办了小学生运动会,我校的体育健儿们努力拼搏获得了优异的成绩。你们都看到比赛了吗?〔学生答复〕老师也看了一些比赛,不过老师和同学们一样要上课,还有许多精彩比赛都错过了。今天,我要先带大家去观摩一场小型的运动会。
[设计意图:课的开场通过师生对话,谈谈同学们身边发生的大事,合理利用课前的几分钟,就犹如奏响了课堂教学主题曲的前奏。既吸引学生学习的注意力,也可拉近师生之间的心理间隔 ,激发学生的学习热情,创设宽松的课堂气氛,让学生在心理平安的状态下进入学习活动。]
二、创设情景,提出问题〔5分钟〕 1、情景导入:小动物的运动会。
〔多媒体播放〕四只小兔子从同一条起跑线起跑,分四个道次沿椭圆形跑道跑一圈,再回到同一个终点,谁先回到终点就为第一。
师:同学们对这场比赛有什么看法吗?你有什么方法可以使比赛公平呢?
[设计意图:数学课程标准中指出数学要严密联络学生的生活环境,从学生的经历和已有知识出发,创设良好的教学环
第 10 页 共 18 页
境。运动会是学生生活中很熟悉的活动,它贴进学生的生活实际,真实、自然。课的开场在这样一个学生熟悉的活动中设计了一场不公平的比赛,让学生在观看的同时也发现了比赛中存在的问题,并且提出问题。学生还结合自己的生活经历发表理解决问题的方法,比方:学生提出将起跑线向前挪动的方法,等等。激发了学生探究问题的欲望。]
2、赛事回放:欣赏运动场上运发动起跑时的图片。 老师同步讲解:同学们的想法与我们体育比赛中的想法一样,进展400米的比赛,假如从同一条起跑线起跑,外道比内道长,相邻跑道之间有差距,为了公平的原那么,会将起跑线依次向前移。
3、提出问题:体育比赛中,相邻两道起跑线都提早一定的间隔 ,这个间隔 是随意挪动的吗?相邻起跑线相差多少米?你能看出来吗?
4、提醒课题:今天,我们就带着这个问题走进运动场,用我们的知识找出相邻起跑线相差多少米?重新确定一个公平的起跑线。
〔板书课题:确定起跑线〕
[设计意图:几幅运动场上的图片搭起了现实生活与数学课堂之间的桥梁,充分的表达了数学是来于生活,利用学生的
第 11 页 共 18 页
发现提出问题:起跑线提早的间隔 是多少?使学生感受到生活中也隐藏着数学问题,数学就在我们的身边。]
三、观察跑道、探究问题〔24分钟〕
〔一〕理解跑道构造:出示完好跑道图〔共四道,跑道最内圈为400米〕
1、观察跑道由哪几局部组成?
2、在跑道上跑一圈的长度可以看成是哪几局部的和? 〔板书:跑道一圈长度=圆周长+2个直道长度〕 [设计意图:把生活中的跑道缩小放在屏幕上,既直观又形象,也便于学生观察。并且直道和弯道用不同的颜色更好的引导学生发现跑道中的机密:左右两个弯道合起来其实是个圆。]
〔二〕简化研究问题:
1、85.96米是指哪局部的长度?一条直道吗? 2、讨论:四个小兔子沿跑道跑一圈,各跑道之间的差距会在跑道的哪一局部呢?
3、小结:既然与直道无关,为了便于我们更好的观察,暂时将直道拿走看看差距在那里,好吗?〔课件:直道消失,屏幕上只剩下左右两个弯道。〕
[设计意图:学生在观察中发现相邻跑道的.差距没有在直道局部,有学生想到会在弯道局部。在这里老师做了一个大胆
第 12 页 共 18 页
的创新:既然与直道无关,就把直道拿走,屏幕上只留下了左右两个弯道。给学生留下了无限的考虑空间。]
〔三〕寻求解决方法:
1、左右两个半圆形的弯道合起来是一个什么? 2、讨论:你怎样找出相邻弯道的差距?相邻弯道差距其实就是谁的长度之差?
3、交流小结:只要计算出各圆的周长,算出相邻两圆相差多少米,就是相邻跑道的差距,也就是相邻起跑线相差多少米。
[设计意图:新课程标准中指出,老师要积极利用各种教学资,创造性地使用教材,设计符合学生开展的教学过程,培养学生的创新意识。在这里学生发现左右的半圆是一个圆,课件将左右的弯道合成一个圆,鼓励学生大胆设想,通过小组的合作、交流,倾听别人的意见和想法,激发自己的灵感,让每一个学生对问题发表自己的见解,呵护他们的创新思维,从而找出问题的结果:弯道之差其实就是圆的周长之差。]
〔四〕、动手解决问题:
1、计算圆的周长要知道什么?〔直径〕
2、课件出示:第一道的直径为72.6米,第二道是多少?第三道呢?
第 13 页 共 18 页
3、老师带着学生填写表格的前两道,剩下的由学生完成。
跑道直径〔米〕周长〔米〕相邻跑道相差长度〔米〕 确定起跑线说课稿4 【教材简析】
《确定起跑线》是一节综合应用数学知识的理论活动课,是在学生掌握了圆的概念和周长等知识的根底上设计的。教材设计这个数学综合理论活动,一方面让学生理解田径场跑道的构造,通过小组合作的探究性活动,综合运用所学的知识和方法,动手理论解决问题,学会确定起跑线的方法;另一方面让学生体会数学在日常生活中的应用价值,增强学生应用数学的意识,不断进步理论才能和解决问题的才能。
【教学目的】
知识与技能:让学生经历运用圆的有关知识计算所走弯道间隔 的过程,理解“跑道的弯道局部,外圈比内圈要长”,从而学会确定起跑线的方法。
过程与方法:结合详细的实际问题,通过观察、比拟、分析^p 、归纳等数学活动,让学生通过独立考虑与合作交流等活动进步解决实际问题的才能。
情感与态度:在主动参与数学活动的过程中,让学生实在体会到探究的乐趣,感受到数学在体育等领域的广泛应用。
【教学重点】
第 14 页 共 18 页
通过圆的周长计算公式,理解田径场跑道的构造,能根据起跑线设置原理正确计算起跑线的位置。
【教学难点】
综合运用圆的知识解答生活中遇到的实际问题,探究起跑线位置的设置与什么有关。
【教学流程】
首先,第一局部:提出问题。
其实我们六年级的学生在经历了2023年北京奥运会和历年来的校运动会、区运动会以来,对于运发动要站在不同起跑线上,已经有了一些朦朦胧胧的意识,甚至有局部同学已经会跟学习语文一样去预习一下。所以,我打算引导学生,让他们自己来提出问题。通过百米飞人博尔特参加的两个比赛图片,让学生观察。发现两个比赛起跑时的不同点,接着老师提出问题:相邻起跑线相差多少米呢?从而引出课题。
然后是第二局部:解决问题。
解决问题这个局部,我打算分为独立考虑、发现规律和验证规律三个环节。
由于这节课的主要目的在于发现、验证、应用规律,而不在于计算,由于书上所提供的数据计算比拟费事,学生会在这上面花费大量的时间,从而影响主要目的的达成。所以在计算时允许让学生使用计算器计算。
第 15 页 共 18 页
解决问题第一个环节:独立考虑。
先让学生根据黑板上的跑道示意图进展研究,讨论怎样求相邻跑道的长度差。要解决这个问题,其中学生最容易想到的一种方案是分别求出第一道和第二道的全长,然后减一减,书上的图二也有提示。但是其实关于跑道周长的计算,在之前数学书第71页的练习十六中已经出现过了,学生已经发现生活中的跑道其实是由两个半圆和两条直道构成的,知道如何计算单条跑道的长度。也会出现直接用相邻跑道的外圆和内圆的周长相减。
解决问题第二个环节:发现规律。
先请学生计算第一和第二跑道起点相差的间隔 ,学生可能会出现几种不同的方法。老师有意识地先请第一种解题方案的小组来汇报,并做好记录。在解决这个问题的过程中,肯定有同学会发现第二种解题方案,也就是书上图三所提示的:因为各条跑道直道的长度都一样,所以要求前两圈跑道差距,只要计算出第二道和第一道所在圆周长的差距就可以了。在汇报完第一种解题方案以后,学生就会提出自己的新方法,这时,可以让学生自己来做做小老师,培养他们把内在知识外化的才能。
至于第四种解决方案,即相邻跑道的差距=2π道宽。这是这节课重点要发现的规律,不一定会有学生想到,这时就要
第 16 页 共 18 页
看老师怎么引导了。要得出这个规律,不光要求学生有较强的思维才能,也要求学生有一定的算术素养。即在解决问题的时候,不急着把答案算出来,而是运用代数的知识,符号化的考虑,把一些数据先用公式字母代替,合并化简以后再最后求出答案。
比方说这里,在学生介绍第二种解题方案的同时,老师就可以一边记录,一边引导学生往第三种方案上靠拢。从方案一开场,相邻跑道的差距=第二道全长-第一道全长,转换成符号化表示:=(2a+πD)-(2a+πd)=πD-πd,即第二道圆周长-第一道圆周长。引导到这里,先让同学把第二种方案介绍完。然后让大家一起观察,还能不能继续等下去?有没有新的方法?这时,就会有同学说用乘法分配律=π〔D-d〕。那么D-d又是什么呢?局部同学可能已经发现了,让他们来说说看,假如学生解释不清楚,老师可以再通过课件演示,说明D-d就是两个道宽,而道宽是什么?就是两条半径之差。然后继续等下去:=2π〔R-r〕=2π道宽。
解决问题第三个环节:验证规律。
得出一个规律,就科学的考虑过程而言,还不一定正确,必需要经过验证,这时可以出示刚刚未完成的表格,让同学们先根据第四种解题方案预测一下各跑道的总长,把直径和全长
第 17 页 共 18 页
两栏填完,并再次强化理解每相邻两道的直径各要加上两个道宽。然后让每组同学任选一个跑道,填一填。
最后是第三局部:拓展应用
研究这节课的目的,不只是仅仅为理解决一个跑道问题,而是要举一反三、触类旁通。让学生学会解决生活中的数学问题。因此,我设计了以下几个题目:
拓展一:在运动场上还有200米比赛,相邻跑道之间又应该相差多少米?200米只有400米的一半,只要跑一个半圆和一个直道就行了,因此,刚刚的三种方案都要÷2。相邻跑道的差距=(a+πD/2)-(a+πd/2)=πD/2-πd/2=〔D/2-d/2〕π=〔R-r〕π=π道宽。
拓展二:我们学校有一个200米的运动场,道宽1米,假如要进展男子400米比赛的话,起跑线应该怎么设置?
第 18 页 共 18 页
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- ovod.cn 版权所有 湘ICP备2023023988号-4
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务