您好,欢迎来到欧得旅游网。
搜索
您的当前位置:首页2019 IET之ReID:HPILN: a feature learning framework for cross-modality person re-identification

2019 IET之ReID:HPILN: a feature learning framework for cross-modality person re-identification

来源:欧得旅游网

HPILN: a feature learning framework for cross-modality person re-identification
当前的问题及概述
提出了一种新的特征学习框架:hard pentaplet loss和identity loss network (HPILN),(HPILN)。在该框架中,对现有的单模态再识别模型进行了修正以适应交叉模态场景,并采用专门设计的hard pentaplet loss和identity loss来提高修正后的交叉模态再识别模型的准确性。

模型及loss

从上图可以看出,图a为HT loss,目的是最小化anchor xa和positive xp之间的距离,最大化anchor xa和negative xn之间的距离,图b为HP loss,既包含了HT loss的任务外,还加入了最小化cross-modality positive xcp和最大化cross-modality negative xcn,图a为选择the hardest triplet(三元组),图b为选择the hardest pentaplet (五元组)。
所以,HP loss包含两部分,原理同HT loss:
hard global triplet (HGT) loss:

a hard cross-modality triplet (HCT) loss:

本文中总loss为:

实验
数据集:SYSU-MM01
不同特征提取方法的训练参数:

不同特征提取方法在Market1501, CUHK03, and DukeMTMC-reID数据集的比较:

不同特征提取方法在SYSU-MM01数据集上的rank 1%的比较:

用CAM方法关注不同特征提取操作的attention:

其中:
Res-Mid:The devil is in the middle: exploiting mid-level representations for cross-domain instance matching(2017)
MGN:Learning discriminative features with multiple granularities for person re-identification(2018)
PCB:Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline) (2018)
MLFN:Multi-level factorisation net for person re-identification(2018)
BFE :Batch feature erasing for person re- identification and beyond(2018)

不同现有的性能比较:

Cross-module ReID method
zero-padding:RGB-infrared cross-modality person re-identification(2017)
cmGAN:Cross-modality person re-identification with generative adversarial training(2018)
bi-directional dual-constrained top-ranking (BDTR):Visible thermal person re-identification via dual-constrained top-ranking(2018)
inter-channel pair between the visible-lightand thermal images + multi-scale Retinex (IPVT-1 + MSR):Person re-identification between visible and thermal camera images based on deep residual CNN using single input(2019)
D2RL:Learning to reduce dual-level discrepancy for infrared-visible person re-identification(2019)
bi-directional center-constrained top-ranking (eBDTR):‘Bi-directional center-constrained top- ranking for visible thermal person re-identification(2020)
D-hypersphere manifold embedding (HSME):HSME: hypersphere manifold embedding for visible thermal person re-identification(2019)
one-stream and two-stream networks:RGB-infrared cross-modality person re-identification(2017)
Other method
handcrafted features such as Histograms of Oriented Gradient (HOG):Histograms of oriented gradients for human detection(2005)
and Local Maximal Occurrence (LOMO) :Person re-identification by local maximal occurrence representation and metric learning(2015)
cross-domain models such as Common Discriminant Feature Extraction (CDFE) :Inter-modality face recognition(2006)
and Camera coRrelation Aware Feature augmenTation (CRAFT):Person re-identification by camera correlation aware feature augmentation(2018)
canonical correlation analysis (CCA) :A new approach to cross-modal multimedia retrieval(2010)
metric learning method Local Fisher Discriminant Analysis (LFDA):Local fisher discriminant analysis for pedestrian re-identification(2013)

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- ovod.cn 版权所有 湘ICP备2023023988号-4

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务